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Synopsis 

The investigation characterizes the rate-dependent uniaxial stress-strain behavior of several 
polymeric materials. The characterization is done using both a mechanical model with rate-de- 
pendent elements and a general nonlinear theory of viscoelasticity. Experimental data were 
gathered on a Laminac polyester resin, and further data on polycarbonate and PMMA were col- 
lected from the work of Brinson. The mechanical model could be called a modified Bingham 
type, while the nonlinear viscoelastic theory was the single integral constitutive model proposed 
by Bernstein, Kearsley, and Zapas. Results from the mechanical model gave good agreement 
with the experimental data, the maximum difference being about 10%. The BKZ theory predic- 
tions modeled the data to within 5-12% average error. 

INTRODUCTION 

A review of the literature indicates that there .have been many theoretical 
studies pertaining to the linear viscoelastic behavior of polymeric materials. 
The linear infinitesimal theory of viscoelasticity is well formulated and has 
been successfully used with experimental data for the determination of need- 
ed theoretical material parameters. In comparison, however, nonlinear vis- 
coelastic behavior at finite strains, being more difficult to model, has had rel- 
atively few successful characterization studies. The difficulty with nonlinear 
viscoelastic modeling lies in finding a suitable constitutive model which will 
allow a straightforward experimental determination of the model material 
parameters. 

McLellanl used a phenomenological constitutive equation to describe con- 
ventional stress-strain behavior for several metallic and nonmetallic materi- 
als. His constitutive equation is based on the Ramberg-Osgood equation for 
describing stress-strain curves. 

Soden and Sowerby2 were able to predict all the important features of ten- 
sile stress-strain curves of commercially pure lead and cellulose nitrate, using 
creep test data. Their description included the dependence of the stress- 
strain curve upon extension rate. 

A spring-dashpot model proposed by Haward and Thackray3 has been used 
to describe the isothermal stress-strain curves of certain high polymers. 
Chase and Goldsmith4 considered a nonlinear, four-parameter, elastic-visco- 
plastic model to describe the mechanical behavior of a polyester-styrene co- 
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polymer. Their model covers a range of seven decades of strain rate and 
strains up to 40%. 

Brinson and DasGupta5 used a mechanical model of the Bingham type to 
predict the stress-strain-strain rate behavior of polycarbonate for any indi- 
vidual strain rate. The same type of model was used by Chander6 to charac- 
terize the stress-strain behavior of a polyester material for arbitrary strain 
rates. More recently, the same results as those of Chander have been found 
by Brinson, Renieri, and Herak~vich.~ Both Chander6 and Brinson et al.7 
show that the Bingham model elements follow a semilog relationship. 

Fitzgerald and Vakilis demonstrate that P th  order Lebesgue norms may be 
used for the nonlinear characterization of sand-asphalt concrete. Agreement 
between theory and experiment is very good for relaxation tests, constant 
strain-rate tests, and interrupted- and reverse-ramp strain tests. 

Several nonlinear integral constitutive models have been used to predict 
uniaxial behavior of polymers, e.g., Ward and Onat? Pipkin and Rodgers,lo 
and Bernstein, Kearsley, and Zapas.11J2 Of primary importance in using 
nonlinear constitutive relations is the experimental determination of the ma- 
terial constants andlor functions used in the particular theory. For nonlin- 
ear materials with memory, such a determination can often be quite complex. 
Because of its relative simplicity and past success, the single integral model 
proposed by Bernstein, Kearsley, and Zapas (hereinafter referred to as BKZ) 
will be one of the constitutive relations used in the present analysis. Experi- 
mental verification13J4 and productive mathematical analyses have proven 
this theory to be very. worthwhile. 

The purpose, then, of this investigation is to characterize the rate-depen- 
dent uniaxial stress-strain behavior of several polymeric materials. Charac- 
terization is done using both a mechanical model with rate-dependent ele- 
ments as originally developed by Chander6 and Brinson7 and the nonlinear 
BKZ theory of viscoelasticity. Modeling success is measured by the ability of 
the model to predict experimental stress-strain data a t  various strain rates. 

EXPERIMENTAL PROGRAM 

The experimental program consisted of constant head-(strain)-rate and re- 
laxation tests on a polyester polymeric material marketed in the United 
States by American Cyanamid under the trade name Laminac. The material 
tested consists of 60% flexible (Laminac EPX-126-3) and 40% rigid (Laminac 
41 16) resins. All tests were performed under controlled environmental con- 
ditions of approximately 70°F and 50% relative humidity. 

Constant strain-rate tests were performed with a tensile machine capable 
of controlled head rates. Load measurements were made with a load cell and 
recorded on one channel of a dual-channel recorder. 

Strain measurements were made by recording cross-head position of the 
testing machine on the second channel of the recorder, as a function of time. 
The relationship between strain and cross-head position was determined by 
calibration. The calibration procedure consisted of measuring the distance 
between finely scribed transverse lines on a tensile specimen as a function of 
screw rotation. A traveling microscope was used for distance measurements. 
By employing the definition of strain, it was possible to relate rotation to 
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strain. Numerous tests were run, and it was established that a linear rela- 
tionship existed between strain and rotation for the long, slender, tensile 
specimens being used. 

Since strain and load were recorded simultaneously as a function of time, it 
was possible to eliminate time as a factor in the mechanical characterization 
tests. 

Relaxation tests were conducted using the same machine as previously dis- 
cussed, with a slight modification. Load was applied to the tensile specimen 
by means of a lever and weight. Different values of constant deformation 
were attained by adjusting the vertical screw of the testing machine. Practi- 
cally instantaneous deformation was attained by lowering weights on a pan 
attached to the lever. A load cell and digital voltmeter gave load as a func- 
tion of time. Strain measurements were made using a traveling microscope 
to measure the distance between finely scribed transverse lines on a tensile 
specimen, both before and after application of weights. 

The one-dimensional stress-strain data6 shown in Figure 1 indicate that 
the mechanical behavior is initially linear, followed by a region of nonlinear 
viscoelastic behavior, and finally extends to a region of almost perfectly plas- 
tic flow. This particular type of behavior motivates the selection of the 
mathematical mechanical model shown in Figure 2. 

Typical relaxation results are shown in Figure 3. Relaxation tests consist- 
ed of strains ranging from the linear portion of the stress-strain curves (0.5%) 
to the region of almost perfectly plastic flow (6%). Subjecting the tensile 
specimens to larger strains resulted in brittle fracture. This relaxation data 
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Fig. 2. Mechanical model of Bingharn type 

is to be used in determining material parameters needed in the BKZ theory of 
viscoelasticity. 

MODIFIED BINGHAM MODEL 

The first of two analytical techniques used to match the experimental data 
employs the use of the mechanical model shown in Figure 2. The model, 
which would be called a modified Bingham type, is composed of an elastic el- 
ement with modulus E ,  a viscous element with viscosity 7, and rigid, perfectly 
plastic elements with yield values Y1 and Yz. This model qualitatively gives 
the elastic, viscoelastic, and perfectly plastic behavior found in the experi- 
mental data in Figure 1. Brinson and DasGupta5 employed this model for 
fixed element parameters E, 7, Y1, and Yz to predict the behavior of polycar- 
bonate. Chander6 and Brinson et al.7 also employed this model with rate- 
dependent elements. In addition, Chase and Goldsmith4 have used a similar 
model with rate-dependent element parameters to model polyester copoly- 
mer data. 

The stress-strain relationship predicted by this model is given by 

(1) 
rl - b +  u = Y1+ 7;; Y1 I u < Y.2 
E 

u = Yz; E > Ey 

where tY is the yield strain at  the initiation of perfectly plastic flow. The so- 
lution of eq. (1)~ for the constant strain rate case is 

where k = R = constant, and €0 = Y d E .  
In order to adequately predict the stress-strain behavior shown in Figure 1, 

the parameters E, 9, Y1, and Yz must be taken to be rate dependent, i.e., they 
must be functions of the strain rate R. The elastic modulus E ,  the two yield 
stresses Y 1  and Yz, and the yield strain t y  were empirically determined as 
functions of the strain rate from the stress-strain data. With these parame- 
ters known, eq. (2) may be employed at  the perfectly plastic point (a = Y2 
when E = e y )  to generate an expression which can be solved numerically to de- 
termine 7 as a function of R. The results are 
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where Eo, Eoo, Ylo, Yloo, Y20, Y20, 90, and m are constants whose numerical 
values will be given in subsequent figures. 

It turns out that eq. (2) models the data even for t > ty, since exp [- EI tR  
(t - to)] << 1 for t > ty. Hence, eq, (Ic) is actually not used for the present 
study. A comparison between the experimental polyester data and the ana- 
lytical model is shown in Figure 4. Good agreement between theory and ex- 
periment is found, with the maximum error being about 10%. 

The constitutive eqs. (1) and (2) were also used to predict the stress-strain 
behavior of polycarbonate and poly(methy1 methacrylate) (PMMA). Experi- 
mental data from Brinson5 were used to determine the empirical relation- 
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ships for E, Y1, Yz, and 7). The correlation between theory and experiment 
for these two materials is shown in Figures 5 and 6.  Again, it can be seen 
that good agreement is obtained, indicating that the nonlinear mechanical 
model is also valid for other polymeric materials. 

NONLINEAR BKZ MODEL 

Realizing the limitations and short comings of a mechanical model, the 
stress-strain data were also modeled using a nonlinear theory of viscoelastici- 
ty. The particular theory which was used is the single integral constitutive 
model proposed by Bernstein, Kearsley, and Zapas.l1JZ This BKZ theory, in 
addition to modeling non-Newtonian solutions and melts, can also model 
bulk polymers. 

The incompressible, isotropic, and isothermal form of this theory relates 
the stress u at time t to the past history of the strain through the expression 
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where p is the hydrostatic pressure, I is the unit tensor, C, is the relative 
right Cauchy-Green strain tensor, ( )-l indicates the inverse, and U is a mate- 
rial function which depends on the time 7 and the two invariants of the strain 
tensor 11 and 1 2 ,  with 

where tr  is the trace operation. 

tion of stretch follows from eq. (4) to beI2 
For the uniaxial strain case under consideration, the stress along the direc- 

where X is the principal extension ratio and is related to the infinitesimal 
strain by X = 1 + t, and h is a material function defined by 

An important, useful result concerning this theory is found in the single- 
step stress relaxation situation, i.e., 

l ; t  < 0  
[A;  t > 0' 

X(t) = 

For this case, the stress is given by 

a ( t )  = (A2 - i) H(X, t )  

where 

and so 

Equations (9) and ( lo) ,  then, imply the important result that data from a 
stress relaxation experiment allow the determination of the material function 
h and hence allow the calculation of the stress response to any other deforma- 
tion history in the same uniaxial geometry. 

Using the preceding characterization concept, stress relaxation data were 
gathered on the polyester resin under study (see Fig. 3). These data are re- 
plotted in Figure 7 using the reduced stress, UR = c / (X2  - l / X ) ,  as the ordi- 
nate; hence, by eq. (9) the material function H(X, t )  is actually plotted. An 
empirical curve was fitted to the data by a least-squares computer routine 
using the form 

(11) 
1 

H(X,t)  = 
a(X) + b(X)t" 

where a(X) and b(X) are functions of the strain alone, and n is a constant. 
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For each relaxation curve, the best a and b were determined for n = constant. 
Then, by plotting a and b versus A, the functional dependence of the strain 
was found. The results are 

a(A)  = Ale-A2(X-1) + A 3 

b ( A )  = B1X + B2 (12) 

n =  . 2 3  

where AI, A2, A3, B1, and B2 are constants. The curve fitting was done with 
a maximum error of about 1.5%. Since the determination of h(X,t) requires 
the differentiation of H(A,t), it  is important to fit the data as close as possi- 
ble. 

With the material function h(X,t) now determined, attention is directed 
toward predicting the stress-strain curves. These curves correspond to the 
situation of constant rate of strain following rest history, i.e., 

X(t) = [ l ; t  < O  
1 + Rt; t >0' 

For this case, eq. (6) gives the stress response as 

( I  + Rt)2 - - ] H ( l  + Rt,t) 
1 + Rt 

+ 1 J 1 + R L ( i - $ ) h [ [ , ~  1 + Rt ( l - : ) ] d t .  (14) 
R ( l  + Rt )  I 
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The material functions h and H given by eqs. (10)-(12) are then substitut- 
ed in eq. (14) to generate the BKZ theoretical results. I t  was not possible to 
evaluate the integral appearing in eq. (14) in closed form; consequently, use 
was made of a numerical integration scheme. A comparison between the ex- 
perimental polyester data and the analytical BKZ model is shown in Figure 8. 
Agreement for this case can only be classified as fair, with an average error of 
about 512%. It  appears from the figure that, in the initial and final portions 
of the curve, the BKZ model is not correctly predicting the data. Reasons 
which suggest an explanation for this are given in the concluding section. 

DISCUSSION 

The previous study has attempted to characterize the one-dimensional, 
rate-dependent stress-strain behavior of certain polymeric materials. The 
characterization was done using both a mechanical model (modified Bingham 
type) and a general nonlinear theory of viscoelasticity (BKZ single integral 
model). Characterization success was measured by the ability of the particu- 
lar model to accurately predict the experimental data in a constant strain 
rate situation. 

The question remains, will the characterization for this particular test be 
adequate to predict the material's response to other loading situations? For 
the case of the mechanical model, the answer to the question is no. Because 

35 

30 

25 

N 
' 0  2 0  

X 
.- 
v) a - 
$ 15 
W 
LT + 
v) 

10 

5 

0 

+ + + +  

B,= -0000947 0 185 

Symbols - Experimental 

- Theoretical Equation (14) 
I I I I 

20 

c 

0 
15 

N 
E .. 
Lo 
a, c 
r. u - 

10 2 
LT 
k 
v) 

5 

0 

0 2 4 6 8 10 

PERCENT STRAIN 

Fig. 8. Comparison between BKZ model and experimental data for polyester: A1 in (psi)-', 
A2 nondimensional, AS in (psi)-l, B1 in (psi/min")-', B2 in (psi/min")-', n nondimensional. 



STRESS-STRAIN BEHAVIOR 431 

of the high degree of empiricism, the mechanical model with rate-dependent 
elements cannot be expected to give adequate results for, say, nonconstant 
strain-rate tests. On the other hand, the BKZ model, as pointed out pre- 
viously, will predict material behavior for any loading history. Specifically, 
for the uniaxial case, once the material function h(X,t) is found (i.e., the ma- 
terial is characterized), then, according to the theory, the behavior to any uni- 
axial loading situation can be computed. The work by Zapas13J4 experimen- 
tally confirms this fact. 

Although mechanical modeling suffers because of its empiricism, i t  can be 
useful with rate-dependent elements in a given geometric deformation config- 
uration. It has been shown that one model with a fixed form for the element 
rate dependence can give very good results for more than one particular poly- 
meric material. 

With regard to the BKZ theory, its marginal comparison with the data in 
the initial and final portions of the stress-strain curve can be traced to the 
determination of the material functions h(X,t) and H(X,t). The function 
H (  X,t) was found by curve-fitting stress relaxation data. I t  was very difficult 
experimentally to gather accurate small time data in this type of test because 
the stress is changing very rapidly. Furthermore, in the determination of the 
strain dependence of H(X,t), i.e., the determination of a(X) and b(X) in eq. 
(12), it  was experimentally difficult to run stress relaxation tests a t  large 
strains with the particular polyester. And for the case of h(X,t), which re- 
quires the differentiation of H (  X,t ), these errors become amplified. 

In light of this initial modeling problem with the BKZ theory, it is inter- 
esting to investigate the initial slope of the stress-strain curve according to 
the theory. The slope follows from differentiation of eq. (14): 

2(1 + Rt )  + ] H ( l  + Rt,t)  
d a  1 d a  
- - - -= d t  R dt [ - 

(1  + Rt)2 

( 1 + R t ) 2  -- -- ] dH ( 1  + Rt,t) 
1 + R t  R dt 

- R ( l  + Rt)2 l l+Rt ( 1  - $) h [ [, ( 1  - : ) I d [  
( 1  + Rt)3  - 1 + h( 1 + Rt,t) 
R ( l  + Rt)4 

+ R2(1 + R t )  ll+Rt ( 1  - $) $ h [  6, ( 1  - : ) I d [ .  (15) 

Considering the initial slope at  t = 0 gives 

[ dH ( 1  + Rt,t) 
3 

1 + Rt dt 
+ limt-0 

1 ) .  (16)  
h(1 + Rt,t) 

(1  + Rt)3  
+ 
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It appears from the functional dependence in the limit term in eq. (16) 
that, although this term may be nonzero, it will be independent of the strain 
rate R regardless of the choice of material function H(X,t). Consequently, 
the initial slope itself would be independent of the strain rate. This result is 
contrary to the polyester experimental data shown in Figure 1. Note that for 
the mechanical model, the modulus E was rate dependent as given in eq. (3a). 

For the particular material function chosen in this study, defined by eqs. 
(11) and (12), the limit term in (16) is zero and 

Furthermore, Zapas and Craft13 used the form 

1 
H(X,t) = a ( t )  ( A 2  - 1) + p t )  + y ( t )  

for the material function, with a, @, and y being arbitrary functions of time 
alone. They found excellent agreement between theory and experiment, but 
only presented one curve at  a single strain rate. For their case, if a, @, and y 
along with their derivatives are assumed to be finite for 0 I t < 00, then, from 
eq. (W, 

which is rate independent. 
This work is intended only to be preliminary in establishing theoretical 

constitutive models capable of predicting uniaxial rate-dependent behavior of 
polymers subjected to finite strains. Further data on other polymers over a 
wider range of strain rates are needed to test the validity of the two models 
proposed in this study. In addition, further nonlinear theories such as those 
proposed by Pipkin and RogerslO and Green and Rivlin15 should be charac- 
terized and compared with data. 
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